Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior

نویسندگان

  • C. R. da Cunha
  • M. Mineharu
  • M. Matsunaga
  • N. Matsumoto
  • C. Chuang
  • Y. Ochiai
  • G.-H. Kim
  • K. Watanabe
  • T. Taniguchi
  • D. K. Ferry
  • N. Aoki
چکیده

We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic behavior of the Compound Nucleus, open Quantum Dots and other nanostructures

It is well established that physical systems exhibit both ordered and chaotic behavior. The chaotic behavior of nanostructures such as open quantum dots has been confirmed experimentally and discussed exhaustively theoretically. This is manifested through random fluctuations in the electronic conductance. What useful information can be extracted from this noise in the conductance? In this contr...

متن کامل

Conductance fluctuations in chaotic bilayer graphene quantum dots.

Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dira...

متن کامل

Conductance Fluctuations in Graphene Systems: the Relevance of Classical Dynamics

Conductance fluctuations associated with transport through quantum-dot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. However, we find that in graphene quantum-dot systems, when a magnetic field is present, signatures of classical dynamics can disappear and universal scaling behaviour emerge. In particular, as the F...

متن کامل

Conductivity Coefficient Modeling in Degenerate and Non-Degenerate Modes on GNSs

Carbon nanoscrolls (CNSs) with tubular structure similar to the open multiwall carbonnanotube have been of hot debate during recent years. Due to its unique property, Graphene Nanoscroll (GNS) have attracted many research groups’ attention and have been used by them. They specially studied on energy storage devices such as batteries and super capacitors. These devices can be schematically...

متن کامل

OFFPRINT Quantum chaotic scattering in graphene systems

We investigate the transport fluctuations in both non-relativistic quantum dots and graphene quantum dots with both hyperbolic and nonhyperbolic chaotic scattering dynamics in the classical limit. We find that nonhyperbolic dots generate sharper resonances than those in the hyperbolic case. Strikingly, for the graphene dots, the resonances tend to be much sharper. This means that transmission o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016